Options for the structure of an autonomous electric power system with a battery of hydrogen fuel cells

Author:

Karabadzhak Ivan D.,Nikitin Victor V.ORCID

Abstract

Background. Recently, interest in the problem of reducing the emissions of hydrocarbon fuel combustion products into the atmosphere and the use of alternative and renewable energy sources has sharply increased. This problem is relevant to both stationary and transport energy. One of the ways to reduce the harmful impact of primary energy sources in autonomous transport power plants on the environment is their hybridization, i.e., use, along with traditional energy sources (turbogenerators and diesel generators), of hydrogen sources of electricity (fuel cell batteries). Aim. This study presents a justification of the optimal variant of the structure of an autonomous electric power system with a combined power plant based on hydrogen sources of electricity. Materials and Methods. To achieve this goal, a comparative analysis of the parameters and characteristics of the power system elements was performed, as well as a method for modeling processes in the power system under study using the MATLAB Simulink package. Two options for the structure of an autonomous electric power system are being considered, namely, a common AC and DC bus. An analysis of the parameters and characteristics of these options was performed for three typical operating modes, namely, turning on a static load, direct starting of an asynchronous motor with a load on the shaft, and transferring consumers from power from a diesel generator to power from a battery of hydrogen fuel cells. Results. In all considered modes, the VTE battery is characterized by a rapid response to load changes and stable efficiency. The nature of transient processes is aperiodic or low oscillatory, rapidly decaying. In terms of the number of semiconductor converters, filtering devices, and their total power, the structure of an autonomous power system with a common AC bus is more preferable.

Publisher

ECO-Vector LLC

Reference15 articles.

1. Shnipova AI. Development of hydrogen energy in Russia: a new energy policy. Energy of Unified Grid. 2022;62(1):58–69. [cited: 13.12.2023] Available from: https://энергия-единой-сети.рф/annotatsii-nomerov/1-62-2022/

2. Tezuka K. 20 Years of Railway Technical Research Institute. Japan Railway & Transport Review. 2007;47(3):9–15. [cited: 13.12.2023] Available from: https://www.ejrcf.or.jp/jrtr/jrtr47/pdf/f09_Tez.pdf

3. The Fuel Cell Industry Review, 2021. [internet] [cited 13 Dec. 2023] Available from: https://fuelcellindustryreview.com

4. Klebsch W, Guckes N, Heininger P. Evaluation of climate-neutral alternatives to diesel multiple units. Economic viability assessment based on the example of the Düren network. June, 2020. [cited: 13.12.2023] Available from: https://www.vde.com/resource/blob/2068330/

5. Performance Improvement of Fuel Cell Hybrid Powered Test Railway Vehicle

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3