Abstract
El almidón, componente natural del jugo de caña de azúcar, es causante de pérdidas y problemas operacionales en la industria azucarera, debido al incremento en la viscosidad en el jugo, que inhibe la cristalización e incrementa la pérdida de sacarosa. El objetivo de esta investigación fue optimizar el proceso de hidrólisis enzimática del almidón por acción de la alfa amilasa de Bacillus licheniformis. Se optimizaron la concentración de enzima y el tiempo de reacción, con respecto a la maximización de la concentración de maltosa, determinado como azúcar reductor por el método del Ácido Dinitrosalicílico; el porcentaje de hidrolisis del almidón y la productividad, las cuales fueron analizadas independientemente y en conjunto por un Diseño Central Compuesto Rotacional y la Metodología de Superficie de Respuesta.
Se caracterizó la enzima alfa-amilasa obteniéndose una temperatura optima de 90°C y pH óptimo de 7, determinándose un rango de linealidad para la dilución 1:100 de 20 minutos, una actividad enzimática de 28.35 U/mg y las constantes cinéticas Km de 5.82 g/L y Vmax de 0.30 g/L*min. Finalmente, del diseño experimental se obtuvieron las condiciones ambientales óptimas de concentración de enzima de 817 ppm y tiempo de reacción de 17 minutos a una temperatura de 90°C. De la validación de las condiciones óptimas de hidrolisis del almidón en el jugo de caña de azúcar, se obtuvieron: concentración de maltosa 0.380 g/L, porcentaje de hidrolisis 73.09 % y la productividad 1.341 g/L*h, que correspondieron a variaciones mayores que los valores calculados, en 16%, 11.3% y 18% respectivamente.
Publisher
Universidad Autonoma de Nayarit - Revista Bio Ciencias
Reference36 articles.
1. Baş, D., & Boyaci, I.H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024
2. Božić, N., Ruiz, J., Lopez-Santin, J., & Vujčić, Z. (2011). Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochemical Engineering Journal, 53(2), 203–209. https://doi.org/10.1016/j.bej.2010.10.014
3. Bradford, M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72 (1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
4. Brooks, H., Geeganage, S., Kahl, S., Montrose, C., Sittampalam, S., Smith, M., & Weidner, J. (2012). Basics of Enzymatic Assays for HTS. En Sittampalam, G., Grossman, A., Brimacombe K, et al., (Ed.). Assay Guidance Manual [Internet]. Eli Lilly & Company and the National Center for Advancing Translational Sciences. https://www.ncbi.nlm.nih.gov/books/NBK92007/
5. Brumovsky, L. (2014). Química del almidón. Universidad Nacional de Misiones. Argentina.