Using a Convolutional Neural Network to Recognize Text Elements in Poor Quality Scanned Images

Author:

Vinokurov Igor Victorovich1ORCID

Affiliation:

1. Financial University under the Government of the Russian Federation

Abstract

The paper proposes a method for recognizing the content of scanned images of poor quality using convolutional neural networks (CNNs). The method involves the implementation of three main stages. At the first stage, image preprocessing is implemented, which consists of identifying the contours of its alphabetic and numeric elements and basic punctuation marks. At the second stage, the content of the image fragments inside the identified contours is sequentially fed to the input of the CNN, which implements a multiclass classification. At the third and final stage, the post-processing of the set of SNA responses and the formation of a text document with recognition results are implemented. An experimental study of all stages was carried out in Python using the Keras deep learning libraries and OpenCV computer vision and showed fairly good results for the main types of deterioration in the quality of a scanned image: geometric distortions, blurring of borders, the appearance of extra lines and spots during scanning, etc.

Publisher

Ailamazyan Program Systems Institute of Russian Academy of Sciences (PSI RAS)

Subject

General Computer Science

Reference23 articles.

1. A. Chauhan. Convolutional Neural Networks for multiclass image classification - A beginners guide to understand CNN, 2020, Published in The Startup URL https://medium.com/swlh/convolutional-neural-networks-for-multiclass-image-classification-a-beginners-guide-to-6dbc09fabbd.

2. J. Brownlee. How to develop a CNN for MNIST handwritten digit classification, 2019, Machine Learning Mastery URL https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/.

3. V. Mokin. MNIST models testing: typographic digits, 2021, Kaggle URL https://www.kaggle.com/datasets/vbmokin/typographic-digits-first-10-fonts.

4. K. Y. Chan. Font recognition using CNN approach, Tunku Abdul Rahman University College, 2021 URL https://eprints.tarc.edu.my/id/eprint/19207.

5. Reading scene text with fully convolutional sequence modeling

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recognition of digital sequences using convolutional neural networks;Program Systems: Theory and Applications;2023-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3