Author:
Tretyakov D.B.,Entin V.M.,Yakshina E.A.,Beterov I.I.,Ryabtsev I.I.
Abstract
Abstract
The temporal dynamics of three-photon 5S1/2 → 5P3/2 → 6S1/2 → 39P3/2 laser excitation of mesoscopic ensembles of cold Rb atoms to Rydberg states in a magneto-optical trap is studied using cw single-frequency lasers at each stage. The ensembles comprise N = 1 – 5 atoms and are detected by the method of selective field ionisation with postselection with respect to the number of atoms. The dependence of the excitation probability on the duration of the exciting laser pulses and the number of detected Rydberg atoms is investigated. At short interaction times, a linear increase in probabilities is observed, and at large times, the probabilities reach saturation, while each number of atoms has its own characteristic features. The experimental dependences are compared with the results of numerical calculations in the framework of a four-level model, and their good agreement is obtained. The conditions necessary for observing Rabi population oscillations are determined. The obtained results are important for the application of Rydberg atoms in quantum information.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献