Abstract
AbstractLeft-invariant optimal control problems on Lie groups are an important class of problems with a large symmetry group. They are theoretically interesting because they can often be investigated in full and general laws can be studied by using these model problems. In particular, problems on nilpotent Lie groups provide a fundamental nilpotent approximation to general problems. Also, left-invariant problems often arise in applications such as classical and quantum mechanics, geometry, robotics, visual perception models, and image processing.The aim of this paper is to present a survey of the main concepts, methods, and results pertaining to left-invariant optimal control problems on Lie groups that can be integrated by elementary functions. The focus is on describing extremal trajectories and their optimality, the cut time and cut locus, and optimal synthesis. Questions concerning the classification of left-invariant sub-Riemannian problems on Lie groups of dimension three and four are also addressed.Bibliography: 91 titles.
Funder
Russian Foundation for Basic Research
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献