Generation of high-power few-cycle femtosecond IR pulses by double-chirp parametric amplification
-
Published:2020-12-01
Issue:12
Volume:50
Page:1126-1133
-
ISSN:1063-7818
-
Container-title:Quantum Electronics
-
language:
-
Short-container-title:Quantum Electron.
Author:
Frolov S.A.,Trunov V.I.
Abstract
Abstract
We present an energy scalable configuration for the generation of high-power few-cycle femtosecond IR pulses based on the sequential parametric amplification of chirped radiation pulses at the idler (0.86 μm) and signal (1.39 μm) wavelengths from the multi-terawatt femtosecond laser system made at the Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences (ILP SB RAS). The configuration under consideration involves the sequential production of radiation pulses with centre wavelengths of 2.24, 3.56, and 7.25 μm. The conditions are determined for the generation of few-cycle pulses with a terawatt peak power in the 3.56 μm (15.8 fs, 1.5 cycles) and 7.25 μm (17.2 fs, shorter than one cycle) domains. The phase transfer between signal and idler waves in the double-chirp parametric amplification is investigated for the first time.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials