Application of Business Information Management in Cross-border Real Estate Project Management

Author:

Yang Jingwen

Abstract

Cross-border real estate project management is inherently challenging due to its complexity and diversity. This study investigates the efficacy of business information management systems (BIMS) in managing such projects and employs machine learning models for performance prediction analysis. Utilizing data from 250 valid questionnaires and 15 in-depth interviews, multiple regression analysis, classification algorithms, and clustering analysis models were applied. The results indicate that system quality, information quality, and service quality significantly enhance project management efficiency and user satisfaction. Specifically, the adoption of BIMS reduces average project completion time and cost overrun rates, thereby improving management effectiveness. Commercial real estate projects reported the highest average investment at $70 million, mixed-use projects exhibited the longest average completion time of 25 months, and residential real estate projects achieved the highest management efficiency score, averaging 8.0. The regression model's coefficient of determination (R²) was 0.68, the classification model achieved an 85% accuracy in identifying risk factors, and clustering analysis categorized projects into high-efficiency management, risk-concentrated, and resource-intensive types. These findings underscore the substantial value of BIMS in cross-border real estate project management, providing robust management tools and decision support. However, the study's limitations include a small sample size and restricted data sources. Future research should aim to expand the sample size and incorporate more diverse data sources to enhance the findings' generalizability and accuracy.

Publisher

Warwick Evans Publishing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3