Smart Room Lighting System for Energy Efficiency in Indoor Environment

Author:

Ramadhani Rafika Rizky,Yuliana Mike,Pratiarso Aries

Abstract

The building sector absorbs 40% of global energy sources. Energy demand in the building sector is dominated by around 60 – 70% electricity, mainly used for air conditioning, water pumping machines, and lighting. On average, artificial lighting can consume 37% of the total electrical energy needs. Meanwhile, sunlight enters the room through the morning window from noon until the afternoon. Using unnecessary or excessive room lighting when there is a natural light source in the room consumes a relatively large total energy requirement of the building. There is a need for a smart lighting system specifically for indoors for efficient energy management and a lighting control system integrated with IoT, which utilizes the intensity of natural light in a room. In this paper, we proposed that the Smart Room Lighting System uses the fuzzy logic method based on ESP32 to control the lighting in the room to save electricity usage for a room lamp. The result of the tool's design, it can control the light starting from bright, dim, and lights go out. The results obtained by the Smart Room Lighting System can reduce power consumption by up to 93% and energy by up to 70%.

Publisher

Dr. Soetomo University

Subject

Polymers and Plastics,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3