A concise and accurate model for the magnetomechanical effect

Author:

Zhao Wei,Wang Shuting,Li Yaozhong,Liu Lunhong

Abstract

Stress concentration and microscopic defects inside a component can cause the failure of equipment and mechanical structures, and traditional non-destructive testing (NDT) methods are not able to completely solve this problem. The magnetomechanical effect organically combines the magnetic field and stress, making it an important approach for detecting stress concentration and microscopic defects in a component. The magnetomechanical model proposed by Jiles can explain the non-linear relationship between stress and magnetic induction, but it fails to explain the asymmetry in the change of magnetisation under the conditions of tensile and compressive stress. A general nonlinear magnetomechanical model proposed by Shi can more precisely explain the magnetomechanical effect, but with complex equations. Using a more precise equation for magnetostrictive strain and taking into account the effects of the demagnetising field and a linear stress-dependent term on the magnetomechanical effect, this paper proposes a concise and accurate model based on the merits of the two methods. This theoretical model can demonstrate the magnetomechanical effect more accurately than Jiles' model and is easier to solve and apply than Shi's model. This model offers the possibility of quantitative measurement of stress concentration by magnetic measurements.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3