Quantitative weld defect sizing using convolutional neural network-aided processing of RT images

Author:

Mirzapour M,Movafeghi A,Yahaghi E

Abstract

Non-destructive confirmation of seamless welding is of critical importance in most applications and digital industrial radiography (DIR) is often the method of choice for internal flaw detection. DIR images often suffer from fogginess, limiting the inspection of flawed regions in online and quantitative applications. Much focus has therefore been put on denoising and image fog removal to yield better outcomes. One of the methods most widely used to improve the image is the fast and flexible denoising convolutional neural network (FFCN). This method has been shown to offer excellent image quality performance combined with fast execution and computing efficiency. In this study, the FFCN image processing technique is implemented and applied to radiographic images of welded objects. Enhancement of defect detection is achieved through sharpening of the image feature edges, leading to improved quantification in weld flaw sizing. The method is applied to the radiographic images using the weighted subtraction method. Experienced radiographers find that the weld defect detail is better visualised with output images from the FFCN algorithm compared to the original radiographs. Improvement in weld flaw size quantification is evaluated using test objects and the distance between the first two lines of the image quality indicator (IQI). The results show that the applied algorithm enhances the visualisation of internal defects and increases the detectability of fine fractures in the welded region. It is also found that, by selective image contrast enhancement near the flaw edges, flaw size quantification is improved significantly. The algorithm is found to be efficient, enabling online automated implementation on standard personal computers.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3