Research on ultrasonic echo signal denoising via integration of adaptive variational mode decomposition algorithm and convolutional neural network

Author:

Wang Tao1,Yu Cijun1

Affiliation:

1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

This paper presents a novel ultrasonic signal denoising method that integrates adaptive variational mode decomposition (AVMD) with convolutional neural networks (CNNs). Initially, the whale optimisation algorithm (WOA) is employed to optimise key parameters of variational mode decomposition, specifically the decomposition modes K and the penalty factor α. The ultrasonic signals are then decomposed into intrinsic mode functions (IMFs) and various statistical feature parameters, such as energy entropy, sample entropy, kurtosis and correlation factors, are calculated for each IMF. The signal-to-noise ratio (SNR) of the reconstructed signal from the IMFs is used to assign label values, forming a feature dataset. Subsequently, a CNN is utilised to train and recognise this dataset, achieving an accuracy rate of 93.94% on the test set. The results demonstrate that the CNN effectively distinguishes between various IMF combinations based on the reconstructed SNR and can proficiently identify IMF combinations with higher SNR. Finally, denoising experiments on actual ultrasonic echo signals validate the feasibility of this method for noise reduction applications.

Publisher

British Institute of Non-Destructive Testing (BINDT)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3