Investigation into defect image segmentation algorithms for galvanised steel sheets under texture backgrounds

Author:

Pan Rui1,Gao Wei2,Zuo Yunbo3,Wu Guoxin3,Chen Yuda1

Affiliation:

1. Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China

2. Technology Center, Ma'anshan Iron & Steel Company Limited, Ma'anshan 243000, China

3. Key Laboratory of Measurement & Control of Mechanical and Electrical System Technology, Mechanical Electrical Engineering School, Beijing Information Science & Technology University, Beijing 100101, China

Abstract

Image segmentation is a significant step in image analysis and computer vision. Many entropy-based approaches have been presented on this topic. Among them, Tsallis entropy is one of the best-performing methods. In this paper, the surface defect images of galvanised steel sheets were studied. A two-dimensional asymmetric Tsallis cross-entropy image segmentation algorithm based on chaotic bee colony algorithm optimisation was used to investigate the segmentation of surface defects under complex texture backgrounds. On the basis of Tsallis entropy threshold segmentation, a more concise expression form was used to define the asymmetric Tsallis cross-entropy in order to reduce the calculation complexity of the algorithm. The chaotic algorithm was combined with the artificial bee colony (ABC) algorithm to construct the chaotic bee colony algorithm, so that the optimal threshold of Tsallis entropy could be quickly identified. The experimental results showed that compared with the maximum Shannon entropy algorithm, the calculation time of this algorithm decreased by about 58% and the threshold value increased by about (26%, 54%). Compared with the two-dimensional Tsallis cross-entropy algorithm, the calculation time of this algorithm decreased by about 35% and about 20% was improved in the g-axis direction only. Compared with the two-dimensional asymmetric Tsallis cross-entropy algorithm, the calculation time of this algorithm decreased by about 30% and the threshold values of the two algorithms were almost the same. The algorithm proposed in this paper can rapidly and effectively segment defect targets, making it a more suitable method for detecting surface defects in factories with a rapid production pace.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3