Moving from Fuel to Feedstock : Selective hydrocarbon activation using rhodium and iridium complexes

Author:

Morton Paul A.1,Mansell Stephen M.1

Affiliation:

1. Institute of Chemical Sciences, School of Engineering and Physical Sciences William Perkin Building, Heriot-Watt University, Edinburgh, EH14 4AS UK

Abstract

Carbon-hydrogen bond activations and their subsequent functionalisation have long been an important target in chemistry because C‐H bonds are ubiquitous throughout nature, making C‐H derivatisation reactions highly desirable. The selective and efficient functionalisation of this bond into many more useful carbon-element bonds (for example, C‐B, C‐Si, C‐O and C‐S bonds) would have many uses in pharmaceutical and bulk chemical synthesis. Activation of the C‐H bond is, however, challenging due to the high strength and low bond-polarity of this bond rendering its cleavage unfavourable. With the correct choice of reagents and systems, especially those utilising directing groups, kinetically and thermodynamically favourable catalytic processes have been developed. However, a key remaining challenge is the development of undirected, intermolecular reactions using catalysts that are both selective and active enough to make useful processes. In this review, the progress towards optimising Group 9 C‐H activation catalysts is discussed, particularly focusing on undirected reactions that are kinetically more difficult, starting with a brief history of C‐H activation, identifying the importance of auxiliary ligands including the nature of anionic ligand (for example, cyclopentadienyl, indenyl, fluorenyl and trispyrazolylborate) and neutral ligands (such as phosphines, carbonyl, alkenes and N-heterocyclic carbenes (NHCs)) that contribute towards the stability and reactivity of these metal complexes. The tethering of the anionic ligand to strong σ-donating ligands is also briefly discussed. The focus of this review is primarily on the Group 9 metals rhodium and iridium, however, C‐H activation using Group 8 and 10 metals are compared where useful. The most recent advances in this field include the development of C‐H borylation of many small hydrocarbon substrates such as arenes, heterocycles and N-alkanes as well as the more challenging substrate methane.

Publisher

Johnson Matthey

Subject

Electrochemistry,Metals and Alloys,Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3