Stereological and Morphometric Study of Type 3 Collagen Formation in the Cutaneous Wounds of Diabetic Mice Treated with Mesenchymal Stem Cells

Author:

Rodrigues Huanna Waleska Soares,Neto Napoleão Martins Argôlo,Silva Lucilene Dos Santos,Carvalho Maria Acelina Martins de,Monteiro Betânia Souza

Abstract

Introduction: Wound healing is a progressive, essential and complex physiological process that occurs as a restorative response after a tissue injury. It involves three phases: inflammation, proliferation and maturation. Exogenous, endogenous and pathological factors may interfere in the cicatricial process in humans and animals by altering the balance between the synthesis, degradation and remodelling of collagen and elastic fibres. Diabetes mellitus is a progressive metabolic disease that alters elastogenesis and collagenesis and induces delays in the healing process. Scientific evidence suggests that mesenchymal stem cells modulate the cicatricial response. Thus the objective of this work was to perform stereological and morphometric analysis to determine the formation of dermal fibres in cutaneous fragments of a murine model of diabetes mellitus.Materials, Methods & Results: Histological sections were obtained from the cutaneous wounds of diabetic mice. The cutaneous wounds were previously treated with autogenous mesenchymal stem cells, physiological solution or polyurethane membrane. The histological sections were subsequently processed and stained for type 1 and 3 collagen fibres and elastic fibres using Picrosirius Red and Weigert staining, respectively. Histological sections stained with Picrosirius Red presented three types of birefringence under polarised light microscopy that corresponded to red colours for type 1 collagen and green and yellow colours for type 3 collagen. Weigert staining presented three colours for histological structures under white light microscopy that corresponded to black colours for elastic fibres, variations in colour from pink to purple for other structures and dermal attachments. The elastic fibres, represented by a black colour, presented in a heterogeneous form and were either identified as thin, punctiform or rectangular fibres or as elastic agglomerates. A greater volume of elastic fibres was observed in the superficial dermis than in the deep dermis, arranged irregularly. These fibres were organised longitudinally to the dermo-epidermal junction and surrounding the blood vessels and hair follicles. The images obtained were evaluated using the Cavalieri principle of stereology to obtain quantitative data in three-dimensions (3D), represented by the volume of the dermal fibres, and by the colour segmentation method. The K-means clustering plug-in in Image J® was used to quantify the area of the dermal fibres in the cutaneous wounds after the proposed dermatological treatments. A total of 90 images were obtained and analysed. No statistically significant differences (P > 0.01) were observed in the volume or area of type 1 collagen fibres between the treatment groups. Significant differences (P < 0.01) were only identified for the volumes and areas of type 3 collagen, with treated animals also presenting lower mean values for the volume and area of elastic fibres compared to the control group.Discussion: The preponderance of type 3 immature collagen in the cutaneous wounds of animals treated with stem cells indicates active collagenase and greater fibroblastic activity, which is probably induced by stem cells. Diametrically, the identification of lower levels of elastic fibres in the cutaneous fragments treated with stem cells suggests that cell therapy does not contribute satisfactorily to elastogenesis. Previous reports suggested that mesenchymal stem cells may decrease elastin synthesis, and such a situation may have occurred in this study. The autologous mesenchymal stem cells increased the formation of collagen fibres in diabetic mice at the detriment of the formation of elastic fibres, thus suggesting active early collagen in the first 2 weeks of the cicatricial process.

Publisher

Universidade Federal do Rio Grande do Sul

Subject

General Veterinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3