Author:
Gazzola Filippo, ,Sperone Gianmarco,
Abstract
<abstract><p>Half a century after the appearance of the celebrated paper by Serrin about overdetermined boundary value problems in potential theory and related symmetry properties, we reconsider semilinear polyharmonic equations under Dirichlet boundary conditions in the unit ball of $ \mathbb{R}^{n} $. We discuss radial properties (symmetry and monotonicity) of positive solutions of such equations and we show that, in <italic>conformal dimensions</italic>, the associated Green function satisfies elegant reflection and symmetry properties related to a suitable Kelvin transform (inversion about a sphere). This yields an alternative formula for computing the partial derivatives of solutions of polyharmonic problems. Moreover, it gives some hints on how to modify a counterexample by Sweers where radial monotonicity fails: we numerically recover strict radial monotonicity for the biharmonic equation in the unit ball of $ \mathbb{R}^{4} $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Mathematical Physics,Analysis
Reference18 articles.
1. A. D. Alexandrov, Uniqueness theorem for surfaces in the large, Vestnik Leningradskogo Universiteta, 11 (1956), 5–17.
2. A. D. Alexandrov, A characteristic property of spheres, Annali di Matematica, 58 (1962), 303–315.
3. E. Berchio, F. Gazzola, T. Weth, Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems, J. reine angew. Math., 620 (2008), 165–183.
4. H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., 22 (1991), 1–37.
5. T. Boggio, Sulle funzioni di Green d'ordine m, Rend. Circ. Matem. Palermo, 20 (1905), 97–135.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献