Abstract
<abstract><p>We consider the equation</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ u_{tt}+\delta u_t+A^2u+{\lVert{A^{\theta/2} u}\rVert}^2A^\theta u = g $\end{document} </tex-math></disp-formula></p>
<p>where $ A^2 $ is a diagonal, self-adjoint and positive-definite operator and $ \theta \in [0, 1] $ and we study some finite-dimensional approximations of the problem. First, we analyze the dynamics in the case when the forcing term $ g $ is a combination of a finite number of modes. Next, we estimate the error we commit by neglecting the modes larger than a given $ N $. We then prove, for a particular class of forcing terms, a theoretical result allowing to study the distribution of the energy among the modes and, with this background, we refine the results. Some generalizations and applications to the study of the stability of suspension bridges are given.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Mathematical Physics,Analysis
Reference55 articles.
1. U. Battisti, E. Berchio, A. Ferrero, F. Gazzola, Energy transfer between modes in a nonlinear beam equation, J. Math. Pure. Appl., 108 (2017), 885-917.
2. E. Berchio, D. Buoso, F. Gazzola, On the variation of longitudinal and torsional frequencies in a partially hinged rectangular plate, ESAIM COCV, 24 (2018), 63-87.
3. F. Bleich, C. B. McCullough, R. Rosecrans, G. S. Vincent, The mathematical theory of vibration in suspension bridges, U. S. Dept. of Commerce, Bureau of Public Roads, Washington D. C., 1950.
4. E. Berchio, A. Ferrero, F. Gazzola, Structural instability of nonlinear plates modeling suspension bridges: mathematical answers to some long-standing questions, Nonlinear Anal. Real, 28 (2016), 91-125.
5. E. Berchio, F. Gazzola, A qualitative explanation of the origin of torsional instability in suspension bridges, Nonlinear Analysis Theor., 121 (2015), 54-72.