Infinite families of $ 3 $-designs from o-polynomials

Author:

Ding Cunsheng,Tang Chunming

Abstract

<p style='text-indent:20px;'>A classical approach to constructing combinatorial designs is the group action of a <inline-formula><tex-math id="M2">\begin{document}$ t $\end{document}</tex-math></inline-formula>-transitive or <inline-formula><tex-math id="M3">\begin{document}$ t $\end{document}</tex-math></inline-formula>-homogeneous permutation group on a base block, which yields a <inline-formula><tex-math id="M4">\begin{document}$ t $\end{document}</tex-math></inline-formula>-design in general. It is open how to use a <inline-formula><tex-math id="M5">\begin{document}$ t $\end{document}</tex-math></inline-formula>-transitive or <inline-formula><tex-math id="M6">\begin{document}$ t $\end{document}</tex-math></inline-formula>-homogeneous permutation group to construct a <inline-formula><tex-math id="M7">\begin{document}$ (t+1) $\end{document}</tex-math></inline-formula>-design in general. It is known that the general affine group <inline-formula><tex-math id="M8">\begin{document}$ {\mathrm{GA}}_1( {\mathrm{GF}}(q)) $\end{document}</tex-math></inline-formula> is doubly transitive on <inline-formula><tex-math id="M9">\begin{document}$ {\mathrm{GF}}(q) $\end{document}</tex-math></inline-formula>. The classical theorem says that the group action by <inline-formula><tex-math id="M10">\begin{document}$ {\mathrm{GA}}_1( {\mathrm{GF}}(q)) $\end{document}</tex-math></inline-formula> yields <inline-formula><tex-math id="M11">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-designs in general. The main objective of this paper is to construct <inline-formula><tex-math id="M12">\begin{document}$ 3 $\end{document}</tex-math></inline-formula>-designs with <inline-formula><tex-math id="M13">\begin{document}$ {\mathrm{GA}}_1( {\mathrm{GF}}(q)) $\end{document}</tex-math></inline-formula> and o-polynomials. O-polynomials (equivalently, hyperovals) were used to construct only <inline-formula><tex-math id="M14">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-designs in the literature. This paper presents for the first time infinite families of <inline-formula><tex-math id="M15">\begin{document}$ 3 $\end{document}</tex-math></inline-formula>-designs from o-polynomials (equivalently, hyperovals).</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Infinite Families of 3-Designs and 2-Designs From Almost MDS Codes;IEEE Transactions on Information Theory;2022-07

2. On the Intersection Distribution of Degree Three Polynomials and Related Topics;The Electronic Journal of Combinatorics;2021-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3