Author:
Ding Cunsheng,Tang Chunming
Abstract
<p style='text-indent:20px;'>A classical approach to constructing combinatorial designs is the group action of a <inline-formula><tex-math id="M2">\begin{document}$ t $\end{document}</tex-math></inline-formula>-transitive or <inline-formula><tex-math id="M3">\begin{document}$ t $\end{document}</tex-math></inline-formula>-homogeneous permutation group on a base block, which yields a <inline-formula><tex-math id="M4">\begin{document}$ t $\end{document}</tex-math></inline-formula>-design in general. It is open how to use a <inline-formula><tex-math id="M5">\begin{document}$ t $\end{document}</tex-math></inline-formula>-transitive or <inline-formula><tex-math id="M6">\begin{document}$ t $\end{document}</tex-math></inline-formula>-homogeneous permutation group to construct a <inline-formula><tex-math id="M7">\begin{document}$ (t+1) $\end{document}</tex-math></inline-formula>-design in general. It is known that the general affine group <inline-formula><tex-math id="M8">\begin{document}$ {\mathrm{GA}}_1( {\mathrm{GF}}(q)) $\end{document}</tex-math></inline-formula> is doubly transitive on <inline-formula><tex-math id="M9">\begin{document}$ {\mathrm{GF}}(q) $\end{document}</tex-math></inline-formula>. The classical theorem says that the group action by <inline-formula><tex-math id="M10">\begin{document}$ {\mathrm{GA}}_1( {\mathrm{GF}}(q)) $\end{document}</tex-math></inline-formula> yields <inline-formula><tex-math id="M11">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-designs in general. The main objective of this paper is to construct <inline-formula><tex-math id="M12">\begin{document}$ 3 $\end{document}</tex-math></inline-formula>-designs with <inline-formula><tex-math id="M13">\begin{document}$ {\mathrm{GA}}_1( {\mathrm{GF}}(q)) $\end{document}</tex-math></inline-formula> and o-polynomials. O-polynomials (equivalently, hyperovals) were used to construct only <inline-formula><tex-math id="M14">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-designs in the literature. This paper presents for the first time infinite families of <inline-formula><tex-math id="M15">\begin{document}$ 3 $\end{document}</tex-math></inline-formula>-designs from o-polynomials (equivalently, hyperovals).</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献