Epigenetic regulation of the COVID-19 pathogenesis: its impact on the host immune response and disease progression

Author:

Pervin Zinia1,Tasnim Anika2,Ahamed Hasib3,Hasibuzzaman Md Al4

Affiliation:

1. Department of Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, United States

2. Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh

3. Department of Thoracic Surgery, National Institute of Diseases of the Chest and Hospital, Dhaka, Bangladesh

4. Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh

Abstract

<abstract> <p>Coronavirus disease 2019 (COVID-19) is highly infectious and may induce epigenetic alteration of the host immune system. Understanding the role of epigenetic mechanisms in COVID-19 infection is a clinical need to minimize critical illness and widespread transmission. The susceptibility to infection and progression of COVID-19 varies from person to person; pathophysiology substantially depends on epigenetic changes in the immune system and preexisting health conditions. Recent experimental and epidemiological studies have revealed the method of transmission and clinical presentation related to COVID-19 pathogenesis, however, the underlying pathology of variation in the severity of infection remains questionable. Epigenetic changes may also be responsible factors for multisystem association and deadly systemic complications of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infected patients. Commonly, epigenetic changes are evoked by alteration of the host's immune response, stress, preexisting condition, oxidative stress response, external behavioral or environmental factors, and age. In addition, the viral infection itself might manipulate the host immune responses associated with inflammation by reprogramming epigenetic processes which are the susceptible factor for disease severity and death. As a result, epigenetic events such as histone modification and DNA methylation are implicated in regulating pro-inflammatory cytokines production by remodeling macrophage and T-cell activity towards inflammation, consequently, may also affect tissue repair and injury resolution process. This review aims to discuss the comprehensive understanding of the epigenetic landscape of COVID-19 disease progression that varies from person to person with supporting interdisciplinary prognosis protocol to overcome systemic impairment.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Engineering,Energy Engineering and Power Technology

Reference113 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3