Abstract
<p style='text-indent:20px;'>In this paper, a new generalization of the Bernstein-Kantorovich type operators involving multiple shape parameters is introduced. Certain Voronovskaja and Grüss-Voronovskaya type approximation results, statistical convergence and statistical rate of convergence of proposed operators are obtained by means of a regular summability matrix. Some illustrative graphics that demonstrate the convergence behavior, accuracy and consistency of the operators are given via Maple algorithms. The proposed operators are comprehensively compared with classical Bernstein, Bernstein-Kantorovich and other new modifications of Bernstein operators such as <inline-formula><tex-math id="M1">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>-Bernstein, <inline-formula><tex-math id="M2">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>-Bernstein-Kantorovich, <inline-formula><tex-math id="M3">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula>-Bernstein and <inline-formula><tex-math id="M4">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula>-Bernstein-Kantorovich operators.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference48 articles.
1. A. M. Acu, N. Manav and D. F. Sofonea, Approximation properties of $\lambda$-Kantorovich operators, J. Inequal. Appl., 2018 (2018), 12pp.
2. A. Alotaibi, F. Özger and S. A. Mohiuddine and M. A. Alghamdi et al, Approximation of functions by a class of Durrmeyer-Stancu type operators which includes Euler's beta function, Adv. Differ. Equ., 2021 (2021), 14pp.
3. S. N. Bernstein.Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Comm. Soc. Math. Kharkow, 13 (1912), 1-2.
4. H. Bohman.On approximation of continuous and of analytic functions, Ark. Math., 2 (1952), 43-56.
5. Q. B. Cai, The Bézier variant of Kantorovich type $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), 10pp.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献