Machine learning and artificial neural networks to construct P2P lending credit-scoring model: A case using Lending Club data

Author:

Chang An-Hsing1,Yang Li-Kai2,Tsaih Rua-Huan3,Lin Shih-Kuei1

Affiliation:

1. Department of Money and Banking, National Chengchi University, Taiwan

2. Department of Investment and Trading, Cathay Life Insurance Co., Ltd., Taiwan

3. Department of Management Information Systems, National Chengchi University, Taiwan

Abstract

<abstract> <p>In this study, we constructed the credit-scoring model of P2P loans by using several machine learning and artificial neural network (ANN) methods, including logistic regression (LR), a support vector machine, a decision tree, random forest, XGBoost, LightGBM and 2-layer neural networks. This study explores several hyperparameter settings for each method by performing a grid search and cross-validation to get the most suitable credit-scoring model in terms of training time and test performance. In this study, we get and clean the open P2P loan data from Lending Club with feature engineering concepts. In order to find significant default factors, we used an XGBoost method to pre-train all data and get the feature importance. The 16 selected features can provide economic implications for research about default prediction in P2P loans. Besides, the empirical result shows that gradient-boosting decision tree methods, including XGBoost and LightGBM, outperform ANN and LR methods, which are commonly used for traditional credit scoring. Among all of the methods, XGBoost performed the best.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Development,Geography, Planning and Development

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3