Nanocarriers of Eu3+ doped silica nanoparticles modified by APTES for luminescent monitoring of cloxacillin

Author:

Malafatti João Otávio Donizette, ,de Oliveira Ruellas Thamara Machado,Meirelles Mariana Rodrigues,Thomazi Adriana Coatrini,Renda Carmen Greice,Paris Elaine Cristina, , ,

Abstract

<abstract> <p>Drug nanocarriers have been continuously improved to promote satisfactory release control. In this sense, luminescent materials have become an alternative option in clinical trials due to their ability to monitor drug delivery. Among the nanocarriers, silica stands out for structural stability, dispersibility, and surface reactivity. When using ceramic nanocarriers, one of the challenges is their interaction and selectivity capability for organic molecules, such as drugs. In order to overcome such adversity, superficial modifications can be carried out to enable a higher affinity for the desired drug. Thus, the present study aimed to obtain silica nanoparticles (NPs) doped with low concentrations of europium (III) superficially modified by (3-aminopropyl)triethoxysilane (APTES) to assess their interaction with the model drug cloxacillin benzathine. This drug was chosen because it is part of the ampicillin family and is commonly used in several treatments. Near-spherical and homogeneous silica NPs were obtained via sol-gel synthesis, with particle sizes of approximately 21 nm. It was possible to verify the fluorescence capacity of the silica NPs when doped with europium (III) in a mole percent that varied from 0.5 to 3.0%. A 10% volume percent of APTES caused the silica nanoparticles to increase the degree of hydrophobicity, with a shift in the contact angle from 8° to 51°. After surface modification by APTES, the silica nanocarrier (10 g·L<sup>-1</sup>) achieved a satisfactory degree of CLOX incorporation (25 g·L<sup>-1</sup>), increasing the adsorptive capacity to values above 50%. Therefore, silica NPs doped with europium (III) in a low percent of 0.5% (mole) modified by APTES showed promising results as an alternative option for trials and clinical studies of drug incorporation.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3