AttBiLFNet: A novel hybrid network for accurate and efficient arrhythmia detection in imbalanced ECG signals

Author:

Efe Enes1,Yavsan Emrehan2

Affiliation:

1. Department of Electrical and Electronics Engineering, Hitit University, Corum 19030, Turkey

2. Department of Electronics and Automation, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey

Abstract

<abstract> <p>Within the domain of cardiovascular diseases, arrhythmia is one of the leading anomalies causing sudden deaths. These anomalies, including arrhythmia, are detectable through the electrocardiogram, a pivotal component in the analysis of heart diseases. However, conventional methods like electrocardiography encounter challenges such as subjective analysis and limited monitoring duration. In this work, a novel hybrid model, AttBiLFNet, was proposed for precise arrhythmia detection in ECG signals, including imbalanced class distributions. AttBiLFNet integrates a Bidirectional Long Short-Term Memory (BiLSTM) network with a convolutional neural network (CNN) and incorporates an attention mechanism using the focal loss function. This architecture is capable of autonomously extracting features by harnessing BiLSTM's bidirectional information flow, which proves advantageous in capturing long-range dependencies. The attention mechanism enhances the model's focus on pertinent segments of the input sequence, which is particularly beneficial in class imbalance classification scenarios where minority class samples tend to be overshadowed. The focal loss function effectively addresses the impact of class imbalance, thereby improving overall classification performance. The proposed AttBiLFNet model achieved 99.55% accuracy and 98.52% precision. Moreover, performance metrics such as MF1, K score, and sensitivity were calculated, and the model was compared with various methods in the literature. Empirical evidence showed that AttBiLFNet outperformed other methods in terms of both accuracy and computational efficiency. The introduced model serves as a reliable tool for the timely identification of arrhythmias.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3