Study on synergistic effect of multiple physical fields on hot mix asphalt during compaction process

Author:

Yu Huanan1,Gao Yutang1,Qian Guoping12,Zhang Chao1,Shi Changyun1,Ge Jinguo1,Dai Wan1

Affiliation:

1. National Engineering Research Center of Highway Maintenance Technology, School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China

2. Xiangjiang Laboratory, Changsha 410205, China

Abstract

<abstract> <p>The multiple physical fields of hot mix asphalt (HMA) during the compaction process have a significant impact on the durability of asphalt pavement, and this research aimed to evaluate the synergistic effect of the HMA field compaction of multi-physical field evolution during the compaction process. First, the temperature field, structural layer thickness variation, and structural layer density variation were monitored during field compaction. Second, the evolution properties of compaction thickness were obtained under the synergistic influence of multi-physical fields by temperature field and compaction thickness. Finally, the evolution properties of compaction density were obtained under the synergistic influence of multi-physical fields based on the temperature field and structural layer density. The results showed that the field compaction process could be characterized by three stages under the synergistic impact of multi-physical fields. The cooling of the temperature field presents two-stage characteristics. There were cubic polynomial evolution properties for the temperature field versus time and the density versus temperature field. There was an exponential relationship between the thickness of the compacted layer and the number of mills. The aggregate particles showed different motion characteristics in the horizontal and vertical directions and vertical directions. The vertical displacement was larger than the horizontal displacement under the synergistic influence of multi-physical fields during the three stages of compaction. The migration and reorganization of aggregate particles affected the evolution of the multi-physics fields of the compaction process under the action of different compaction modes.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3