Study on synergistic effect of multiple physical fields on hot mix asphalt during compaction process
-
Published:2024
Issue:4
Volume:21
Page:5181-5206
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Yu Huanan1, Gao Yutang1, Qian Guoping12, Zhang Chao1, Shi Changyun1, Ge Jinguo1, Dai Wan1
Affiliation:
1. National Engineering Research Center of Highway Maintenance Technology, School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China 2. Xiangjiang Laboratory, Changsha 410205, China
Abstract
<abstract>
<p>The multiple physical fields of hot mix asphalt (HMA) during the compaction process have a significant impact on the durability of asphalt pavement, and this research aimed to evaluate the synergistic effect of the HMA field compaction of multi-physical field evolution during the compaction process. First, the temperature field, structural layer thickness variation, and structural layer density variation were monitored during field compaction. Second, the evolution properties of compaction thickness were obtained under the synergistic influence of multi-physical fields by temperature field and compaction thickness. Finally, the evolution properties of compaction density were obtained under the synergistic influence of multi-physical fields based on the temperature field and structural layer density. The results showed that the field compaction process could be characterized by three stages under the synergistic impact of multi-physical fields. The cooling of the temperature field presents two-stage characteristics. There were cubic polynomial evolution properties for the temperature field versus time and the density versus temperature field. There was an exponential relationship between the thickness of the compacted layer and the number of mills. The aggregate particles showed different motion characteristics in the horizontal and vertical directions and vertical directions. The vertical displacement was larger than the horizontal displacement under the synergistic influence of multi-physical fields during the three stages of compaction. The migration and reorganization of aggregate particles affected the evolution of the multi-physics fields of the compaction process under the action of different compaction modes.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference46 articles.
1. R. N. Linden, J. P. Mahoney, N. C. Jackson, Effect of compaction on asphalt concrete performance, Transp. Res. Rec., 1217 (1989), 20–28. https://onlinepubs.trb.org/Onlinepubs/trr/1989/1217/1217-003.pdf 2. X. Zhao, D. Niu, P. Zhang, Y. Niu, H. Xia, P. Liu, Macro-meso multiscale analysis of asphalt concrete in different laboratory compaction methods and field compaction, Constr. Build. Mater., 361 (2022), 129607. https://doi.org/10.1016/j.conbuildmat.2022.129607 3. H. Zhang, H. Ding, A. Rahman, Effect of asphalt mortar viscoelasticity on microstructural fracture behavior of asphalt mixture based on cohesive zone model, J. Mater. Civ. Eng., 34 (2022), 04022122. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004277 4. H. Wang, C. Wang, Z. You, X. Yang, Z. Huang, Characterising the asphalt concrete fracture performance from X-ray CT Imaging and finite element modelling, Int. J. Pavement Eng., 19 (2018), 307–318. https://doi.org/10.1080/10298436.2017.1347440 5. P. Liu, H. Xu, D. Wang, C. Wang, C. Schulze, M. Oeser, Comparison of mechanical responses of asphalt mixtures manufactured by different compaction methods, Constr Build Mater., 162 (2018), 765–780. https://doi.org/10.1016/j.conbuildmat.2017.12.082
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|