Author:
Nika Grigor,Muntean Adrian
Abstract
<abstract><p>We propose an enriched microscopic heat conduction model that can account for size effects in heterogeneous media. Benefiting from physically relevant scaling arguments, we improve the regularity of the corrector in the classical problem of periodic homogenization of linear elliptic equations in the three-dimensional setting and, while doing so, we clarify the intimate role that correctors play in measuring the difference between the heterogeneous solution (microscopic) and the homogenized solution (macroscopic). Moreover, if the data are of form $ f = {\rm div}\; {\boldsymbol{F}} $ with $ {\boldsymbol{F}} \in {\rm L}^{3}(\Omega, {\mathbb R}^3) $, then we recover the classical corrector convergence theorem.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability
Reference41 articles.
1. E. C. Aifantis, Internal length gradient (ILG) material mechanics across scales and disciplines, Adv. Appl. Mech., 49 (2016), 1–110. https://doi.org/10.1016/bs.aams.2016.08.001
2. G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482–1518. https://doi.org/10.1137/0523084
3. G. Allaire, M. Amar, Boundary layer tails in periodic homogenization, ESAIM Contr Optim CA, 4 (1999), 209–243. https://doi.org/10.1051/cocv:1999110
4. L. Ambrosio, A. Carlotto, A. Massaccesi, Lectures on Elliptic Partial Differential Equations, Berlin: Springer, 2019.
5. A. Bensoussan, J. L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Netherlands: Elsevier, 1978.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献