Author:
Bartoli Daniele,Denaux Lins
Abstract
<p style='text-indent:20px;'>Over the past few years, the codes <inline-formula><tex-math id="M1">\begin{document}$ {\mathcal{C}}_{n-1}(n,q) $\end{document}</tex-math></inline-formula> arising from the incidence of points and hyperplanes in the projective space <inline-formula><tex-math id="M2">\begin{document}$ {\rm{PG}}(n,q) $\end{document}</tex-math></inline-formula> attracted a lot of attention. In particular, small weight codewords of <inline-formula><tex-math id="M3">\begin{document}$ {\mathcal{C}}_{n-1}(n,q) $\end{document}</tex-math></inline-formula> are a topic of investigation. The main result of this work states that, if <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula> is large enough and not prime, a codeword having weight smaller than roughly <inline-formula><tex-math id="M5">\begin{document}$ \frac{1}{2^{n-2}}q^{n-1}\sqrt{q} $\end{document}</tex-math></inline-formula> can be written as a linear combination of a few hyperplanes. Consequently, we use this result to provide a graph-theoretical sufficient condition for these codewords of small weight to be minimal.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献