Domination mappings into the hamming ball: Existence, constructions, and algorithms
-
Published:2021
Issue:0
Volume:0
Page:0
-
ISSN:1930-5346
-
Container-title:Advances in Mathematics of Communications
-
language:
-
Short-container-title:AMC
Author:
Chee Yeow Meng,Etzion Tuvi,Kiah Han Mao,Vardy Alexander
Abstract
<p style='text-indent:20px;'>The Hamming ball of radius <inline-formula><tex-math id="M1">\begin{document}$ w $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M2">\begin{document}$ \{0,1\}^n $\end{document}</tex-math></inline-formula> is the set <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{B}(n,w) $\end{document}</tex-math></inline-formula> of all binary words of length <inline-formula><tex-math id="M4">\begin{document}$ n $\end{document}</tex-math></inline-formula> and Hamming weight at most <inline-formula><tex-math id="M5">\begin{document}$ w $\end{document}</tex-math></inline-formula>. We consider injective mappings <inline-formula><tex-math id="M6">\begin{document}$ \varphi : \{0,1\}^m \to \mathcal{B}(n,w) $\end{document}</tex-math></inline-formula> with the following <i>domination property:</i> every position <inline-formula><tex-math id="M7">\begin{document}$ j \in [n] $\end{document}</tex-math></inline-formula> is dominated by some position <inline-formula><tex-math id="M8">\begin{document}$ i \in [m] $\end{document}</tex-math></inline-formula>, in the sense that if position <inline-formula><tex-math id="M9">\begin{document}$ i $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M10">\begin{document}$ {\mathit{\boldsymbol{x}}} \in \{0,1\}^m $\end{document}</tex-math></inline-formula> is "switched off" (equal <i>zero</i>), then necessarily position <inline-formula><tex-math id="M11">\begin{document}$ j $\end{document}</tex-math></inline-formula> in its image <inline-formula><tex-math id="M12">\begin{document}$ \varphi({\mathit{\boldsymbol{x}}}) $\end{document}</tex-math></inline-formula> is switched off. This property may be described more precisely in terms of a bipartite <i>domination graph</i> <inline-formula><tex-math id="M13">\begin{document}$ G = \bigl([m] \cup [n], E\bigr) $\end{document}</tex-math></inline-formula> with no isolated vertices; for all <inline-formula><tex-math id="M14">\begin{document}$ (i,j) \in E $\end{document}</tex-math></inline-formula> and all <inline-formula><tex-math id="M15">\begin{document}$ {\mathit{\boldsymbol{x}}}\in \{0,1\}^m $\end{document}</tex-math></inline-formula>, we require that <inline-formula><tex-math id="M16">\begin{document}$ x_i = 0 $\end{document}</tex-math></inline-formula> implies <inline-formula><tex-math id="M17">\begin{document}$ y_j = 0 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M18">\begin{document}$ {\mathit{\boldsymbol{y}}} = \varphi({\mathit{\boldsymbol{x}}}) $\end{document}</tex-math></inline-formula>. Although such domination mappings recently found applications in the context of coding for high-performance interconnects, to the best of our knowledge, they were not previously studied. The concept of domination mapping is thus interesting from both practical and combinatorial points of view.</p><p style='text-indent:20px;'>In this paper, we begin with simple necessary conditions for the existence of an <i><inline-formula><tex-math id="M19">\begin{document}$ (m,n,w) $\end{document}</tex-math></inline-formula>-domination mapping <inline-formula><tex-math id="M20">\begin{document}$ \varphi : \{0,1\}^m \to \mathcal{B}(n,w) $\end{document}</tex-math></inline-formula></i>. We then provide several explicit constructions of such mappings, which show that the necessary conditions are also sufficient when <inline-formula><tex-math id="M21">\begin{document}$ w = 1 $\end{document}</tex-math></inline-formula>, when <inline-formula><tex-math id="M22">\begin{document}$ w = 2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M23">\begin{document}$ m $\end{document}</tex-math></inline-formula> is odd, or when <inline-formula><tex-math id="M24">\begin{document}$ m \leqslant 3w $\end{document}</tex-math></inline-formula>. One of our main results herein is a proof that the trivial necessary condition <inline-formula><tex-math id="M25">\begin{document}$ | \mathcal{B}(n,w)| \geqslant 2^m $\end{document}</tex-math></inline-formula> is, in fact, sufficient for the existence of an <inline-formula><tex-math id="M26">\begin{document}$ (m,n,w) $\end{document}</tex-math></inline-formula>-domination mapping whenever <inline-formula><tex-math id="M27">\begin{document}$ m $\end{document}</tex-math></inline-formula> is sufficiently large. We also present a polynomial-time algorithm that, given any <inline-formula><tex-math id="M28">\begin{document}$ m $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M29">\begin{document}$ n $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M30">\begin{document}$ w $\end{document}</tex-math></inline-formula>, determines whether an <inline-formula><tex-math id="M31">\begin{document}$ (m,n,w) $\end{document}</tex-math></inline-formula>-domination mapping exists for a domination graph with an equitable degree distribution.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference18 articles.
1. A. H. Ajami, K. Banerjee, M. Pedram and L. P. P. P. van Ginneken, Analysis of non-uniform temperature-dependent interconnect performance in high performance ICs, DAC 2001: Proceedings of the 38-th Annual Design Automation Conference, ACM Press, (2001), 567–572. 2. R. Bodi and K. Herr, Symmetries in linear and integer programs, arXiv: 0908.3329, preprint, (2009). 3. Y. M. Chee, T. Etzion, H. M. Kiah, A. Vardy.Cooling codes: Thermal-management coding for high-performance interconnects, IEEE Trans. Inform. Theory, 64 (2018), 3062-3085. 4. Y. M. Chee, T. Etzion, H. M. Kiah, A. Vardy, H. Wei.Low-power cooling codes with efficient encoding and decoding, IEEE Trans. Inform. Theory, 66 (2020), 4804-4818. 5. W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver, Combinatorial Optimization, Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|