Domination mappings into the hamming ball: Existence, constructions, and algorithms

Author:

Chee Yeow Meng,Etzion Tuvi,Kiah Han Mao,Vardy Alexander

Abstract

<p style='text-indent:20px;'>The Hamming ball of radius <inline-formula><tex-math id="M1">\begin{document}$ w $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M2">\begin{document}$ \{0,1\}^n $\end{document}</tex-math></inline-formula> is the set <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{B}(n,w) $\end{document}</tex-math></inline-formula> of all binary words of length <inline-formula><tex-math id="M4">\begin{document}$ n $\end{document}</tex-math></inline-formula> and Hamming weight at most <inline-formula><tex-math id="M5">\begin{document}$ w $\end{document}</tex-math></inline-formula>. We consider injective mappings <inline-formula><tex-math id="M6">\begin{document}$ \varphi : \{0,1\}^m \to \mathcal{B}(n,w) $\end{document}</tex-math></inline-formula> with the following <i>domination property:</i> every position <inline-formula><tex-math id="M7">\begin{document}$ j \in [n] $\end{document}</tex-math></inline-formula> is dominated by some position <inline-formula><tex-math id="M8">\begin{document}$ i \in [m] $\end{document}</tex-math></inline-formula>, in the sense that if position <inline-formula><tex-math id="M9">\begin{document}$ i $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M10">\begin{document}$ {\mathit{\boldsymbol{x}}} \in \{0,1\}^m $\end{document}</tex-math></inline-formula> is "switched off" (equal <i>zero</i>), then necessarily position <inline-formula><tex-math id="M11">\begin{document}$ j $\end{document}</tex-math></inline-formula> in its image <inline-formula><tex-math id="M12">\begin{document}$ \varphi({\mathit{\boldsymbol{x}}}) $\end{document}</tex-math></inline-formula> is switched off. This property may be described more precisely in terms of a bipartite <i>domination graph</i> <inline-formula><tex-math id="M13">\begin{document}$ G = \bigl([m] \cup [n], E\bigr) $\end{document}</tex-math></inline-formula> with no isolated vertices; for all <inline-formula><tex-math id="M14">\begin{document}$ (i,j) \in E $\end{document}</tex-math></inline-formula> and all <inline-formula><tex-math id="M15">\begin{document}$ {\mathit{\boldsymbol{x}}}\in \{0,1\}^m $\end{document}</tex-math></inline-formula>, we require that <inline-formula><tex-math id="M16">\begin{document}$ x_i = 0 $\end{document}</tex-math></inline-formula> implies <inline-formula><tex-math id="M17">\begin{document}$ y_j = 0 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M18">\begin{document}$ {\mathit{\boldsymbol{y}}} = \varphi({\mathit{\boldsymbol{x}}}) $\end{document}</tex-math></inline-formula>. Although such domination mappings recently found applications in the context of coding for high-performance interconnects, to the best of our knowledge, they were not previously studied. The concept of domination mapping is thus interesting from both practical and combinatorial points of view.</p><p style='text-indent:20px;'>In this paper, we begin with simple necessary conditions for the existence of an <i><inline-formula><tex-math id="M19">\begin{document}$ (m,n,w) $\end{document}</tex-math></inline-formula>-domination mapping <inline-formula><tex-math id="M20">\begin{document}$ \varphi : \{0,1\}^m \to \mathcal{B}(n,w) $\end{document}</tex-math></inline-formula></i>. We then provide several explicit constructions of such mappings, which show that the necessary conditions are also sufficient when <inline-formula><tex-math id="M21">\begin{document}$ w = 1 $\end{document}</tex-math></inline-formula>, when <inline-formula><tex-math id="M22">\begin{document}$ w = 2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M23">\begin{document}$ m $\end{document}</tex-math></inline-formula> is odd, or when <inline-formula><tex-math id="M24">\begin{document}$ m \leqslant 3w $\end{document}</tex-math></inline-formula>. One of our main results herein is a proof that the trivial necessary condition <inline-formula><tex-math id="M25">\begin{document}$ | \mathcal{B}(n,w)| \geqslant 2^m $\end{document}</tex-math></inline-formula> is, in fact, sufficient for the existence of an <inline-formula><tex-math id="M26">\begin{document}$ (m,n,w) $\end{document}</tex-math></inline-formula>-domination mapping whenever <inline-formula><tex-math id="M27">\begin{document}$ m $\end{document}</tex-math></inline-formula> is sufficiently large. We also present a polynomial-time algorithm that, given any <inline-formula><tex-math id="M28">\begin{document}$ m $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M29">\begin{document}$ n $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M30">\begin{document}$ w $\end{document}</tex-math></inline-formula>, determines whether an <inline-formula><tex-math id="M31">\begin{document}$ (m,n,w) $\end{document}</tex-math></inline-formula>-domination mapping exists for a domination graph with an equitable degree distribution.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dimensions of Channel Coding: From Theory to Algorithms to Applications;IEEE Journal on Selected Areas in Information Theory;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3