Author:
Liu Yan,Cao Xiwang,Lu Wei
Abstract
<p style='text-indent:20px;'>Due to their wide applications in consumer electronics, data storage systems and communication systems, cyclic codes have been an interesting subject of study in recent years. The construction of optimal cyclic codes over finite fields is important as they have maximal minimum distance once the length and dimension are given. In this paper, we present two classes of new optimal ternary cyclic codes <inline-formula><tex-math id="M1">\begin{document}$ \mathcal{C}_{(2,v)} $\end{document}</tex-math></inline-formula> by using monomials <inline-formula><tex-math id="M2">\begin{document}$ x^2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ x^v $\end{document}</tex-math></inline-formula> for some suitable <inline-formula><tex-math id="M4">\begin{document}$ v $\end{document}</tex-math></inline-formula> and explain the novelty of the codes. Furthermore, the weight distribution of <inline-formula><tex-math id="M5">\begin{document}$ \mathcal{C}_{(2,v)}^{\perp} $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ v = \frac{3^{m}-1}{2}+2(3^{k}+1) $\end{document}</tex-math></inline-formula> is determined.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献