Author:
Biasse Jean-François,Erukulangara Muhammed Rashad
Abstract
<p style='text-indent:20px;'>We present a proof under a generalization of the Riemann Hypothesis that the class group algorithm of Hafner and McCurley runs in expected time <inline-formula><tex-math id="M1">\begin{document}$ e^{\left(3/\sqrt{8}+o(1)\right)\sqrt{\log d\log\log d}} $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M2">\begin{document}$ -d $\end{document}</tex-math></inline-formula> is the discriminant of the input imaginary quadratic order. In the original paper, an expected run time of <inline-formula><tex-math id="M3">\begin{document}$ e^{\left(\sqrt{2}+o(1)\right)\sqrt{\log d\log\log d}} $\end{document}</tex-math></inline-formula> was proven, and better bounds were conjectured. To achieve a proven result, we rely on a mild modification of the original algorithm, and on recent results on the properties of the Cayley graph of the ideal class group.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference40 articles.
1. E. Bach.Explicit bounds for primality testing and related problems, Math. Comp., 55 (1990), 355-380.
2. J. Bauch, D. Bernstein, H. de Valence, T. Lange and C. van Vredendaal, Short generators without quantum computers: The case of multiquadratics, in Proceedings of EUROCRYPT 2017, 10210 (2017), 27–59.
3. K. Belabas, T. Kleinjung, A. Sanso and B. Wesolowski, A note on the low order assumption in class group of an imaginary quadratic number fields, Cryptology ePrint Archive, Report 2020/1310, 2020, https://eprint.iacr.org/2020/1310.
4. D. Bernstein, How to find smooth parts of integers.
5. W. Beullens, T. Kleinjung and F. Vercauteren, Csi-fish: Efficient isogeny based signatures through class group computations, in Advances in Cryptology–ASIACRYPT 2019–25th International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I (eds. S. D. Galbraith and S. Moriai), vol. 11921 of Lecture Notes in Computer Science, Springer, 2019,227–247.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献