Author:
Lv Ying,Xing Li-Li,Bao Wen-Di,Li Wei-Guo,Guo Zhi-Wei
Abstract
<abstract><p>In this research, we constructed a class of nonlinear greedy average block Kaczmarz methods to solve nonlinear problems without computing the Moore-Penrose pseudoinverse of the Jacobian matrix. These kinds of methods adopt the average technique of the Gaussian Kaczmarz method and combine the greedy strategy, which greatly reduces the amount of computation. The local convergence analysis and numerical experiments of the proposed methods are given. The numerical results show the effectiveness of the proposed methods.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference35 articles.
1. H. B. An, Z. Z. Bai, Broyden method for nonlinear equation in several variables, Mathematica Numerica Sinica (Chinese Journal), 26 (2004), 385–400.
2. H. B. An, Z. Z. Bai, Directional secant method for nonlinear equations, J. Comput. Appl. Math., 175 (2005), 291–304. https://doi.org/10.1016/j.cam.2004.05.013
3. Z. Z. Bai, L. Wang, On convergence rates of Kaczmarz-type methods with different selection rules of working rows, Appl. Numer. Math., 186 (2023), 289–319. https://doi.org/10.1016/j.apnum.2023.01.013
4. Z. Z. Bai, W. T. Wu, On greedy randomized Kaczmarz method for solving large sparse linear systems, SIAM J. Sci. Comput., 40 (2018), A592–A606. https://doi.org/10.1137/17M1137747
5. J. Q. Chen, Z. D. Huang, On the error estimate of the randomized double block Kaczmarz method, Appl. Math. Comput., 370 (2020), 124907. https://doi.org/10.1016/j.amc.2019.124907