Affiliation:
1. Department of Mathematics, University of Taipei, Taipei 100234, Taiwan
2. Department of Marketing and Distribution Management, Chien Hsin University of Science and Technology, Taoyuan 320678, Taiwan
Abstract
<abstract><p>Yamamoto's integral was the integral associated with 2-posets, which was first introduced by Yamamoto. In this paper, we obtained the values of infinite series involving harmonic numbers and reciprocal of binomial coefficients by using some techniques of Yamamoto's integral. We determine the value of infinite series of the form:</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \sum\limits_{m_1,\ldots,m_n,\ell_1,\ldots,\ell_k\geq 1}\frac{H_{m_1}^{(a_1)}\cdots H_{m_n}^{(a_n)}} {m_1^{b_1}\cdots m_n^{b_n}\ell_1^{c_1}\cdots\ell_k^{c_k} \binom{m_1+\cdots+m_n+\ell_1+\cdots+\ell_k}{\ell_k}}, $\end{document} </tex-math></disp-formula></p>
<p>in terms of a finite sum of multiple zeta values, for positive integers $ a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_k $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献