Numerical analysis of Darcy resistant Sutterby nanofluid flow with effect of radiation and chemical reaction over stretching cylinder: induced magnetic field

Author:

Abbas Nadeem1,Shatanawi Wasfi123,Hasan Fady1,Shatnawi Taqi A. M.3

Affiliation:

1. Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

2. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

3. Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan

Abstract

<abstract> <p>In this analysis, Sutterby nanofluid flow with an induced magnetic field at a nonlinear stretching cylinder is deliberated. The effects of variable thermal conductivity, Darcy resistance, and viscous dissipation are discussed. Thermal radiation and chemical reaction are considered to analyze the impact on the nonlinear stretching cylinder. The governing model of the flow problem is developed under the boundary layer approximation in terms of partial differential equations. Partial differential equations are transformed into ordinary differential equations by performing the suitable transformations. A numerical structure is applied to explain ordinary differential equations. The impact of each governing physical parameters on the temperature, concentration, skin friction, Sherwood, and Nusselt number is presented in graphs and tabular form. Increment in Prandtl number, which declined the curves of the temperature function. Temperature declined because the Prandtl number declined the thermal thickness as well as reduce the temperature of the fluid. Temperature curves showed improvement as Eckert number values increased because the Eckert number is a ratio of kinetic energy to the specific enthalpy difference between the wall and the fluid. As a result, increasing the Eckert number causes the transformation of kinetic energy into internal energy via work done against viscous fluid stresses.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3