Posterior analysis of particle swarm optimization results applied to gravity inversion in sedimentary basins

Author:

Pallero J. L. G.12,Fernández-Muñiz M. Z.2,Fernández-Martínez J. L.2,Bonvalot S.3

Affiliation:

1. ETSI en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Madrid, Spain

2. Grupo de Problemas Inversos, Optimización y Aprendizaje Automático, Departamento de Matemáticas, Universidad de Oviedo, Oviedo 33007, Spain

3. Laboratoire GET (Université de Toulouse, CNRS, IRD, CNES), Bureau Gravimétrique International (BGI), Toulouse, France

Abstract

<abstract><p>As is well known, it is impossible to model reality with its true level of detail. Additionally, it is impossible to make an infinite number of observations, which are always contaminated by noise. These circumstances imply that, in an inverse problem, the misfit of the best estimated model will always be less than that of the true one. Therefore, it is not possible to reconstruct the model that actually generated the collected observations. The best way to express the solution of an inverse problem is as a collection of models that explain the observations at a certain misfit level according to a defined cost function. One of the main advantages of global search methods over local ones is that, in addition to not depending on an initial model, they provide a set of generated models with which statistics can be made. In this paper we present a technique for analyzing the results of any global search method, particularized to the particle swarm optimization algorithm applied to the solution of a two-dimensional gravity inverse problem in sedimentary basins. Starting with the set of generated models, we build the equivalence region of a predefined tolerance which contains the best estimated model, i.e., which involves the estimated global minimum of the cost function. The presented algorithm improves the efficiency of the equivalence region detection compared to our previous works.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3