Author:
Amin Rohul, ,Shah Kamal,Ahmad Hijaz,Ganie Abdul Hamid,Abdel-Aty Abdel-Haleem,Botmart Thongchai, , , , , , , ,
Abstract
<abstract><p>In this paper, we developed a computational Haar collocation scheme for the solution of fractional linear integro-differential equations of variable order. Fractional derivatives of variable order is described in the Caputo sense. The given problem is transformed into a system of algebraic equations using the proposed Haar technique. The results are obtained by solving this system with the Gauss elimination algorithm. Some examples are given to demonstrate the convergence of Haar collocation technique. For different collocation points, maximum absolute and mean square root errors are computed. The results demonstrate that the Haar approach is efficient for solving these equations.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference37 articles.
1. Y. Xu, V. S. Erturk, A finite difference technique for solving variable-order fractional integro-differential equation, Bull. Iran. Math. Soc., 40 (2014), 699–712.
2. Y. Chen, Y. Wei, D. Liu, H. Yu, Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets, Appl. Math. Lett., 46 (2015), 83–88. https://doi.org/10.1016/j.aml.2015.02.010
3. K. Sun, M. Zhu, Numerical algorithm to solve a class of variable order fractional integral-differential equation based on Chebyshev polynomials, Math. Probl. Eng., 2015 (2015). https://doi.org/10.1155/2015/902161
4. Y. Chen, L. Liu, B. Li, Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238 (2014), 329–341. https://doi.org/10.1016/j.amc.2014.03.066
5. M. Zayernouri, G. E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293 (2015), 312–338. https://doi.org/10.1016/j.jcp.2014.12.001
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献