New remarks on the Kolmogorov entropy of certain coarse-grained deterministic systems

Author:

Moreau Michel1,Gaveau Bernard2

Affiliation:

1. Laboratory of Theoretical Physics of Condensed Matter, Faculty of Sciences, Sorbonne Université, Paris, France

2. Former Professor at the Faculty of Mathematics, Sorbonne Université, Paris, France

Abstract

<abstract> <p>Unless an appropriate dissipation mechanism is introduced in its evolution, a deterministic system generally does not tend to equilibrium. However, coarse-graining such a system implies a mesoscopic representation which is no longer deterministic. The mesoscopic system should be addressed by stochastic methods, but they lead to practically infeasible calculations. However, following the pioneering work of Kolmogorov, one finds that such mesoscopic systems can be approximated by Markov processes in relevant conditions, mainly, if the microscopic system is ergodic. So, the mesoscopic system tends to stationarity in specific situations, as expected from thermodynamics. Kolmogorov proved that in the stationary case, the instantaneous entropy of the mesoscopic process, conditioned by its past trajectory, tends to a finite limit at infinite times. Thus, one can define the Kolmogorov entropy. It can be shown that in certain situations, this property remains true even in the nonstationary case. We anticipated this important conclusion in a previous article, giving some elements of a justification, whereas it is precisely derived below in relevant conditions and in the case of a discrete system. It demonstrates that the Kolmogorov entropy is linked to basic aspects of time, such as its irreversibility. This extends the well-known conclusions of Boltzmann and of more recent researchers and gives a general insight to the fascinating relation between time and entropy.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference25 articles.

1. V. I. Arnold, A. Avez, Ergodic problems of classical mechanics, Mathematical Physics Monographs, Benjamin, 1968.

2. B. Gaveau, M. Moreau, On the stochastic representation and Markov approximation of Hamiltonian systems, Chaos, 30 (2020), 083104. https://doi.org/10.1063/5.0001435

3. J. Doob, Stochastic processes, Wiley, New York, 1953.

4. P. Levy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937.

5. C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3