On the upper bounds for the distance between zeros of solutions of a first-order linear neutral differential equation with several delays

Author:

Attia Emad R.12

Affiliation:

1. Department of Mathematics, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt

Abstract

<p>This work is devoted to studying the distribution of zeros of a first-order neutral differential equation with several delays</p><p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left[y(t)+a(t)y\left(t-\sigma\right)\right]'+ \sum\limits_{j = 1}^n b_j(t)y\left(t-\mu_j\right) = 0, \quad \quad \quad t \geq t_0. \end{equation*} $\end{document} </tex-math></disp-formula></p><p>New estimations for the upper bounds of the distance between successive zeros are obtained. The properties of a positive solution of a first-order differential inequality with several delays in a closed interval are studied, and many results are established. We apply these results to a first-order neutral differential equation with several delays and also to a first-order differential equation with several delays. Our results for the differential equation with several delays not only provide new estimations but also improve many previous ones. Also, the results are formulated in a general way such that they can be applied to any functional differential equation for which studying the distance between zeros is equivalent to studying this property for a first-order differential inequality with several delays. Further, new estimations of the upper bounds for certain equations are given. Finally, a comparison with all previous results is shown at the end of this paper.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3