A mathematical model for predicting and controlling COVID-19 transmission with impulsive vaccination

Author:

Rattanakul Chontita12,Chaiya Inthira3

Affiliation:

1. Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

2. Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand

3. Department of Mathematics, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand

Abstract

<abstract><p>This study examines an epidemiological model known as the susceptible-exposed-infected-hospitalized-recovered (SEIHR) model, with and without impulsive vaccination strategies. First, the model was analyzed without impulsive vaccination in the presence of a reinfection effect. Subsequently, it was studied as part of a periodic impulsive vaccination strategy targeting the susceptible population. These vaccination impulses were administered in very brief intervals at specific time instants, with a fixed time gap between each impulse. The two approaches can be modified to respond to different amounts of susceptibility, with control efforts intensifying as susceptibility levels rise. The model's analysis includes crucial aspects such as the non-negativity of solutions, the existence of steady states, and the stability corresponding to the basic reproduction number. We demonstrate that when vaccination measures are taken into account, the basic reproduction number remains as less than one. Therefore, the disease-free equilibrium in the case of vaccination could still be asymptotically stable at the higher disease transmission rate, as compared to the case of no vaccination in which the disease-free equilibrium may no longer be asymptotically stable. Furthermore, we show that when the disease-free equilibrium is stable, the endemic equilibrium cannot be attained, and that when the reproduction number rises above unity, the disease-free equilibrium becomes unstable while the endemic equilibrium becomes stable. We have also derived conditions for the global stability of both equilibriums. To support our theoretical results, we have constructed a time series of numerical simulations and compared them with real-world data from the ongoing SARS-CoV-2 (COVID-19) pandemic.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference33 articles.

1. Coronavirus disease 2019 (covid-19): Situation report-126, 2020. Available from: https://www.who.int/publications/m/item/situation-report---126.

2. Nebraska Medicine, Covid-19: Disease-induced (natural) immunity, vaccination or hybrid immunity? 2023. Available from: https://www.nebraskamed.com/COVID/covid-19-studies-natural-immunity-versus\-vaccination.

3. WHO COVID-19 dashboard data, 2020. Available from: https://data.who.int/dashboards/covid19/data?n = c.

4. I. Alazman, K. S. Albalawi, P. Goswami, K. Malik, A restricted sir model with vaccination effect for the epidemic outbreaks concerning covid-19, CMES-Comp. Model. Eng., 137 (2023), 3. https://doi.org/10.32604/cmes.2023.028674

5. C. Anastassopoulou, L. Russo, A. Tsakris, C. Siettos, Data-based analysis, modelling and forecasting of the covid-19 outbreak, PloS one, 15 (2020), e0230405. https://doi.org/10.1371/journal.pone.0230405

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3