Affiliation:
1. Department of Mathematics, Mirpur University of Science and Technology(MUST), Mirpur 10250 (AJK), Pakistan
2. Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah 58001, Al-Qadisiyah, Iraq
3. Mathematics Department, College of Science, King Khalid University, Abha, Saudi Arabia
Abstract
<abstract><p>Let $ \mathcal{H} $ be the family of analytic functions defined in an open unit disk $ \mathbb{U = }\left \{ z:|z| < 1\right \} $ and</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \mathcal{A} = \left \{ f\in \mathcal{H}:f(0) = f^{^{\prime}}(0)-1 = 0, { \ \ \ \ \ }(z\in \mathbb{U})\right \} . $\end{document} </tex-math></disp-formula></p>
<p>For $ A\in \mathbb{C}, B\in \lbrack-1, 0) $ and $ \gamma \in \left(\frac{-\pi} {2}, \frac{\pi}{2}\right), $ a function $ h\in $ $ \mathcal{P}_{\gamma}[\xi, A;B] $ can be written as:</p>
<p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ h(z) = \cos \gamma \frac{1+A\omega(z)}{1+B\omega(z)}+i\sin \gamma, \qquad (\omega(0) = 0, \left \vert \omega(z)\right \vert <1, z\in \mathbb{U}), $\end{document} </tex-math></disp-formula></p>
<p>where $ \xi = \omega^{\prime}\left(0\right) \in \overline{\mathbb{U}} $. The family $ \mathcal{B}_{\gamma}\left[\psi, \xi, \beta, A;B\right] $ contains analytic functions $ f $ in $ \mathbb{U} $ such that</p>
<p><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$ \frac{e^{i\gamma}zf^{\prime}(z)}{\left[ f\left( z\right) \right] ^{1-\beta}\left[ \psi(z)\right] ^{\beta}}\in \mathcal{P}_{\gamma}[\xi, A;B], $\end{document} </tex-math></disp-formula></p>
<p>where $ \psi $ is a starlike function. In this research, we find the region of variability denoted by $ \mathcal{V}_{\gamma}[\psi, z_{0}, \xi, A;B] $ for $ f\left(z_{0}\right) $, where $ f $ is ranging over the family $ \mathcal{B}_{\gamma}\left[\psi, \xi, \beta, A;B\right] $ for any fixed $ z_{0}\in \mathbb{U} $ and $ \xi \in \overline{\mathbb{U}}. $</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference23 articles.
1. B. Bhowmik, Regions of variability for a class of analytic and locally univalent functions defined by subordination, Proc. Math. Sci., 125 (2015), 511–519. https://doi.org/10.1007/s12044-015-0252-5
2. S. Chen, H. Aiwu, Region of variabilty for generalized $\alpha$-convex and $\beta$-stalike functions and their extreme points, Commun. Korean Math. Soc., 25 (2010), 557–569. https://doi.org/10.4134/CKMS.2010.25.4.557
3. S. Dineen, The Schwarz lemma, Oxford: Clarendon Press, 1989.
4. P. L. Duren, Univalent functions, New York: Springer, 2001.
5. A. W. Goodman, Univalent functions, Vol. I & II, Washing, New Jersey: Polygonal Publishing House, 1983.