Affiliation:
1. Special Interest Group on Modeling and Data Analytics, Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
2. Department of Mathematics and Statistics, College of Science and Technical Education, Mbeya University of Science and Technology, P.O. Box 131, Mbeya, Tanzania
3. Department of Mathematics, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
Abstract
<abstract><p>The cactus graph has many practical applications, particularly in radio communication systems. Let $ G = (V, E) $ be a finite, undirected, and simple connected graph, then the edge metric dimension of $ G $ is the minimum cardinality of the edge metric generator for $ G $ (an ordered set of vertices that uniquely determines each pair of distinct edges in terms of distance vectors). Given an ordered set of vertices $ \mathcal{G}_e = \{g_1, g_2, ..., g_k \} $ of a connected graph $ G $, for any edge $ e\in E $, we referred to the $ k $-vector (ordered $ k $-tuple), $ r(e|\mathcal{G}_e) = (d(e, g_1), d(e, g_2), ..., d(e, g_k)) $ as the edge metric representation of $ e $ with respect to $ G_e $. In this regard, $ \mathcal{G}_e $ is an edge metric generator for $ G $ if, and only if, for every pair of distinct edges $ e_1, e_2 \in E $ implies $ r (e_1 |\mathcal{G}_e) \neq r (e_2 |\mathcal{G}_e) $. In this paper, we investigated another class of cacti different from the cacti studied in previous literature. We determined the edge metric dimension of the following cacti: $ \mathfrak{C}(n, c, r) $ and $ \mathfrak{C}(n, m, c, r) $ in terms of the number of cycles $ (c) $ and the number of paths $ (r) $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)