Abstract
<abstract><p>In this paper, we consider weighted digraphs and prove that homotopic morphisms between weighted digraphs induce the identical homomorphisms on weighted path homology groups with field coefficients.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference11 articles.
1. A. Grigor'yan, Y. Lin, Y. Muranov, S. T. Yau, Homologies of path complexes and digraphs, Preprint arXiv: 1207. 2834v4, 2013.
2. A. Grigor'yan, Y. Lin, Y. Muranov, S. T. Yau, Cohomology of digraphs and (undirected) graphs, Asian J. Math., 19 (2015), 887–932. https://doi.org/10.4310/AJM.2015.v19.n5.a5
3. A. Grigor'yan, Y. Lin, Y. Muranov, S. T. Yau, Path complexes and their homologies, Journal of Mathematical Sciences, 248 (2020), 564–599. https://doi.org/10.1007/s10958-020-04897-9
4. A. Grigor'yan, Y. Muranov, S. T. Yau, Homologies of digraphs and K$\ddot{u}$nneth formulas, Commun. Anal. Geom., 25 (2017), 969–1018. https://doi.org/10.4310/CAG.2017.v25.n5.a4
5. A. Grigor'yan, Y. Muranov, V. Vershinin, S. T. Yau, Path homology theory of multigraphs and quivers, Forum Math., 30 (2018), 1319–1337. https://doi.org/10.1515/forum-2018-0015