Author:
Agarwal Ravi, ,Hristova Snezhana,O'Regan Donal, ,
Abstract
<abstract><p>Riemann-Liouville fractional differential equations with impulses are useful in modeling the dynamics of many real world problems. It is very important that there are good and consistent theoretical proofs and meaningful results for appropriate problems. In this paper we consider a boundary value problem for integro-differential equations with Riemann-Liouville fractional derivative of orders from $ (1, 2) $. We consider both interpretations in the literature on the presence of impulses in fractional differential equations: With fixed lower limit of the fractional derivative at the initial time point and with lower limits changeable at each impulsive time point. In both cases we set up in an appropriate way impulsive conditions which are dependent on the Riemann-Liouville fractional derivative. We establish integral presentations of the solutions in both cases and we note that these presentations are useful for furure studies of existence, stability and other qualitative properties of the solutions.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference18 articles.
1. R. P. Agarwal, S. Hristova, D. O'Regan, Exact solutions of linear Riemann-Liouville fractional differential equations with impulses, Rocky Mountain J. Math., 50 (2020), 779–791. doi: 10.1216/rmj.2020.50.779.
2. R. Agarwal, S. Hristova, D. O'Regan, Existence and integral representation of scalar Riemann-Liouville fractional differential equations with delays and impulses, Mathematics, 8 (2020), 607. doi: 10.3390/math8040607.
3. R. Agarwal, S. Hristova, D. O'Regan, Non-instantaneous impulses in differential equations, Springer, 2017
4. B. Ahmad, J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theory, 13 (2012), 329–336.
5. B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal.: Hybrid Syst., 3 (2009), 251–258. doi: 10.1016/j.nahs.2009.01.008.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献