Affiliation:
1. Universidad de Córdoba, Departamento de Matemáticas, Campus de Rabanales, Spain
2. Universitat Politècnica de València, Centre for Quality and Change Management (CQ), Spain
Abstract
<abstract><p>Let $ f:V(G)\rightarrow \{0, 1, 2\} $ be a function defined from a connected graph $ G $. Let $ W_i = \{x\in V(G): f(x) = i\} $ for every $ i\in \{0, 1, 2\} $. The function $ f $ is called a total Italian dominating function on $ G $ if $ \sum_{v\in N(x)}f(v)\geq 2 $ for every vertex $ x\in W_0 $ and if $ \sum_{v\in N(x)}f(v)\geq 1 $ for every vertex $ x\in W_1\cup W_2 $. The total Italian domination number of $ G $, denoted by $ \gamma_{tI}(G) $, is the minimum weight $ \omega(f) = \sum_{x\in V(G)}f(x) $ among all total Italian dominating functions $ f $ on $ G $. In this paper, we provide new lower and upper bounds on the total Italian domination number of trees. In particular, we show that if $ T $ is a tree of order $ n(T)\geq 2 $, then the following inequality chains are satisfied.</p>
<p>(ⅰ) $ 2\gamma(T)\leq \gamma_{tI}(T)\leq n(T)-\gamma(T)+s(T) $,</p>
<p>(ⅱ) $ \frac{n(T)+\gamma(T)+s(T)-l(T)+1}{2}\leq \gamma_{tI}(T)\leq \frac{n(T)+\gamma(T)+l(T)}{2}, $</p>
<p>where $ \gamma(T) $, $ s(T) $ and $ l(T) $ represent the classical domination number, the number of support vertices and the number of leaves of $ T $, respectively. The upper bounds are derived from results obtained for the double domination number of a tree.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference17 articles.
1. T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, Chapman and Hall/CRC Pure and Applied Mathematics Series, Marcel Dekker, Inc. New York, 1998.
2. T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs: Advanced topics, Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis, 1998.
3. S. C. García, A. Cabrera-Martínez, F. A. Hernández Mira, I. G. Yero, Total Roman $\{2\}$-domination in graphs, Quaest. Math., 44 (2022), 411–434. https://doi.org/10.2989/16073606.2019.1695230
4. H. A. Ahangar, M. Chellali, S. M. Sheikholeslami, J. C. Valenzuela-Tripodoro, Total Roman $\{2\}$-dominating functions in graphs, Discuss. Math. Graph Theory, 42 (2022), 937–958. https://doi.org/10.7151/dmgt.2316
5. H. Abdollahzadeh Ahangar, M. Chellali, M. Hajjari, S. M. Sheikholeslami, Further progress on the total Roman $\{2\}$-domination number of graphs, Bull. Iranian Math. Soc., 48 (2022), 1111–1119. https://doi.org/10.1007/s41980-021-00565-z
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献