Heat and mass transport of nano-encapsulated phase change materials in a complex cavity: An artificial neural network coupled with incompressible smoothed particle hydrodynamics simulations

Author:

Alhejaili Weaam1,Lee Sang-Wook2,Hat Cao Quang2,Aly Abdelraheem M.3

Affiliation:

1. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. School of Mechanical Engineering, University of Ulsan, Ulsan, South Korea

3. Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

Abstract

<abstract> <p>This work simulates thermo-diffusion and diffusion-thermo on heat, mass transfer, and fluid flow of nano-encapsulated phase change materials (NEPCM) within a complex cavity. It is a novel study in handling the heat/mass transfer inside a highly complicated shape saturated by a partial layer porous medium. In addition, an artificial neural network (ANN) model is used in conjunction with the incompressible smoothed particle hydrodynamics (ISPH) simulation to forecast the mean Nusselt and Sherwood numbers ($ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $). Heat and mass transfer, as well as thermo-diffusion effects, are useful in a variety of applications, including chemical engineering, material processing, and multifunctional heat exchangers. The ISPH method is used to solve the system of governing equations for the heat and mass transfer inside a complex cavity. The scales of pertinent parameters are fusion temperature $ {\theta }_{f} = 0.05-0.95 $, Rayleigh number $ Ra = {10}^{3}-{10}^{6} $, buoyancy ratio parameter $ N = -2-1 $, Darcy number $ Da = {10}^{-2}-{10}^{-5} $, Lewis number $ Le = 1-20 $, Dufour number $ Du = 0-0.25 $, and Soret number $ Sr = 0-0.8 $. Alterations of Rayleigh number are effective in enhancing the intensity of heat and mass transfer and velocity field of NEPCM within a complex cavity. The high complexity of a closed domain reduced the influences of Soret-Dufour numbers on heat and mass transfer especially at the steady state. The fusion temperature works well in adjusting the intensity and location of a heat capacity ratio inside a complex cavity. The presence of a porous layer in a cavity's center decreases the velocity field within a complex cavity at a reduction in Darcy number. The goal values of $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ for each data point are compared to those estimated by the ANN model. It is discovered that the ANN model's $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values correspond completely with the target values. The exact harmony of the ANN model prediction values with the target values demonstrates that the developed ANN model can forecast the $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values precisely.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3