Author:
Zhao Xuanyi, ,Li Jinggai,He Shiqi,Zhu Chungang, ,
Abstract
<abstract><p>The one-to-one property of injectivity is a crucial concept in computer-aided design, geometry, and graphics. The injectivity of curves (or surfaces or volumes) means that there is no self-intersection in the curves (or surfaces or volumes) and their images or deformation models. Bézier volumes are a special class of Bézier polytope in which the lattice polytope equals $ \Box_{m, n, l}, (m, n, l\in Z) $. Piecewise 3D Bézier volumes have a wide range of applications in deformation models, such as for face mesh deformation. The injectivity of 3D Bézier volumes means that there is no self-intersection. In this paper, we consider the injectivity conditions of 3D Bézier volumes from a geometric point of view. We prove that a 3D Bézier volume is injective for any positive weight if and only if its control points set is compatible. An algorithm for checking the injectivity of 3D Bézier volumes is proposed, and several explicit examples are presented.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献