Reversibility of linear cellular automata with intermediate boundary condition

Author:

Chang Chih-Hung1,Yang Ya-Chu1,Şah Ferhat2

Affiliation:

1. Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 81148, Taiwan, R.O.C

2. Adiyaman University, Faculty of Economics and Administrative Sciences, Adiyaman 02040, Turkey

Abstract

<abstract><p>This paper focuses on the reversibility of multidimensional linear cellular automata with an intermediate boundary condition. We begin by addressing the matrix representation of these automata, and the question of reversibility boils down to the invertibility of this matrix representation. We introduce a decomposition method that factorizes the matrix representation into a Kronecker sum of significantly smaller matrices. The invertibility of the matrix hinges on determining whether zero can be expressed as the sum of eigenvalues of these smaller matrices, which happen to be tridiagonal Toeplitz matrices. Notably, each of these smaller matrices represents a one-dimensional cellular automaton. Leveraging the rich body of research on the eigenvalue problem of Toeplitz matrices, our result provides an efficient algorithm for addressing the reversibility problem. As an application, we show that there is no reversible nontrivial linear cellular automaton over $ \mathbb{Z}_2 $.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3