Author:
Wang Xudong,Xiang Tingting
Abstract
<abstract><p>In this paper, we introduced the concept of $ C $-star bodies in a fixed pointed closed convex cone $ C $ and studied the dual mixed volume for $ C $-star bodies. For $ C $-star bodies, we established the corresponding dual Brunn-Minkowski inequality, dual Minkowski inequality, and dual Aleksandrov-Fenchel inequality. Moveover, we found that the dual Brunn-Minkowski inequality for $ C $-star bodies can strengthen the Brunn-Minkowski inequality for $ C $-coconvex sets.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference33 articles.
1. S. Artstein-Avidan, S. Sadovsky, K. Wyczesany, A zoo of dualities, J. Geom. Anal., 33 (2023). https://doi.org/10.1007/s12220-023-01302-0
2. H. Federer, Geometric Measure Theory, Berlin: Springer Press, 1969. http://dx.doi.org/10.1007/978-3-642-62010-2
3. R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc., 342 (1994), 435–445. http://dx.doi.org/10.1090/S0002-9947-1994-1201126-7
4. R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. Math., 140 (1994), 435–447. https://doi.org/10.2307/2118606
5. R. J. Gardner, S. Vassallo, Stability of inequality in the dual Brunn-Minkowski theory, J. Math. Anal. Appl., 231 (1999), 568–587. http://dx.doi.org/10.1006/jmaa.1998.6254