Time-dependent fractional second-grade fluid flow through a channel influenced by unsteady motion of a bottom plate

Author:

Raizah Zehba1,Khan Arshad2,Awan Saadat Hussain2,Saeed Anwar3,Galal Ahmed M.45,Weera Wajaree6

Affiliation:

1. Department of Mathematics, College of Science, Abha, King Khalid University, Saudi Arabia

2. College of Aeronautical Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan

3. Department of Mathematics, Abdul Wali Khan University, Mardan, 23200, Khyber, Pakhtunkhwa, Pakistan

4. Department of Mechanical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Saudi Arabia

5. Production Engineering and Mechanical Design Department, Faculty of Engineering, Mansoura University, P.O 35516, Mansoura, Egypt

6. Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand

Abstract

<abstract> <p>This investigation theoretically describes the exact solution of an unsteady fractional a second-grade fluid upon a bottom plate constrained by two walls at the sides which are parallel to each other and are normal to the bottom plate. The flow in the fluid is induced by the time dependent motion of the bottom plate. Initially the flow equation along with boundary and initial conditions are considered which are then transformed to dimensionless notations using suitable set of variables. The Laplace as well as Fourier transformations have been employed to recover the exact solution of flow equation. The time fractional differential operator of Caputo-Fabrizio has been employed to have constitutive equations of fractional order for second-grade fluid. After obtaining the general exact solutions for flow characteristics, three different cases at the surface of bottom plate are discussed; namely (i) Stokes first problem (ii) Accelerating flow (iii) Stokes second problem. It has noticed in this study that, for higher values of Reynolds number the flow characteristics have augmented in all the three cases. Moreover, higher values of time variable have supported the flow of fractional fluid for impulsive and constantly accelerated motion and have opposeed the flow for sine and cosine oscillations.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3