Author:
Sarfraz Muhammad, ,Li Yongjin
Abstract
<abstract><p>We discuss the solution to the minimum functional equation</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $\end{document} </tex-math></disp-formula></p>
<p>for a real-valued function $ \eta: G \to \mathbb{R} $ defined on arbitrary group $ G $. In addition, we examine the Pexider-type functional equation</p>
<p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \chi(x)\eta(y)+\psi(x), \qquad x, y \in G, \end{align} $\end{document} </tex-math></disp-formula></p>
<p>where $ \eta $, $ \chi $ and $ \psi $ are real mappings acting on arbitrary group $ G $. We also investigate this Pexiderized functional equation that generalizes two functional equations</p>
<p><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $\end{document} </tex-math></disp-formula></p>
<p>and</p>
<p><disp-formula> <label/> <tex-math id="FE4"> \begin{document}$ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $\end{document} </tex-math></disp-formula></p>
<p>with the restriction that the function $ \eta $ satisfies the Kannappan condition.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference12 articles.
1. A. Chaljub-Simon, P. Volkmann, Caractrisation du module d’une fonction additive l’aide d’une quation fonctionnelle, Aequationes Math., 47 (1994), 60-68.
2. W. Jarczyk, P. Volkmann, On functional equations in connection with the absolute value of additive functions, Series Math. Catovic. Debrecen., 32 (2010), 11.
3. I. Toborg, On the functional equation $f(x) + f(y) = \max\{f(xy), f(xy^{-1})\}$ on groups, Archiv der Mathematik, 109 (2017), 215-221.
4. P. Volkmann, Charakterisierung des Betrages reellwertiger additiver Funktionen auf Gruppen, KITopen, (2017), 4.
5. P. Kannappan, The functional equation $f(xy)+ f(xy^{-1}) = 2f(x)f(y)$ for groups, Proc. Am. Math. Soc., 19 (1968), 69-74.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献