Image encryption with leveraging blockchain-based optimal deep learning for Secure Disease Detection and Classification in a smart healthcare environment

Author:

Alrayes Fatma S.1,Almuqren Latifah1,Mohamed Abdullah2,Rizwanullah Mohammed3

Affiliation:

1. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Research Centre, Future University in Egypt, New Cairo, 11845, Egypt

3. Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, AlKharj, Saudi Arabia

Abstract

<abstract> <p>Blockchain (BC) in healthcare can be used for sharing medical records and secure storage and other confidential data. Deep learning (DL) assists in disease recognition through image analysis, specifically in detecting medical conditions from images. Image encryption ensures the security and privacy of medical images by encrypting the image before sharing or storage. The combination of image encryption, BC, and DL provides an efficient and secure system for medical image analysis and disease detection in healthcare. Therefore, we designed a new BC with an Image Encryption-based Optimal DL for Secure Disease Detection and Classification (BIEODL-SDDC) technique. The presented BIEODL-SDDC technique enables the secure sharing of medical images via encryption and BC technology with a DL-based disease classification process. Furthermore, the medical image encryption process took place using the ElGamal Encryption technique with a giraffe kicking optimization (GKO) algorithm-based key generation process. In addition, BC-based smart contracts (SCs) were used for the secure sharing of medical images. For the disease detection process, the BIEODL-SDDC technique encompassed EfficientNet-B7-CBAM-based feature extraction, Adam optimizer, and a fully connected neural network (FCNN). The experimental validation of the BIEODL-SDDC technique was tested on medical image datasets and the outcome highlighted an enhanced accuracy outcome of 94.81% over other techniques.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3