Abstract
<abstract><p>We prove the existence of a nontrivial singular trace $ \tau $ defined on an ideal $ \mathcal{J} $ closed with respect to the logarithmic submajorization such that $ \tau(A_\rho(\alpha)) = 0 $, where $ A_\rho(\alpha):L^{2}(0, 1)\to L^{2}(0, 1) $, $ {[A_\rho(\alpha)f](\theta) = \int^{1}_{0}\rho(\alpha\theta/x)f(x)dx} $, $ 0 < \alpha\leq 1 $. We also show that $ \tau(A_\rho(\alpha)) = 0 $ for every $ \tau $ nontrivial singular trace on $ \mathcal{J} $. Finally, we give a recursion formula from which we can evaluate all the traces $ {\mbox{Tr}}\, (A^{r}_{\rho}(\alpha)) $, $ r\in \mathbb{N} $, $ r\geq 2 $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference27 articles.
1. A. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, Singular traces and compact operators, J. Funct. Anal., 137 (1996), 281–302. https://doi.org/10.1006/jfan.1996.0047
2. J. Alcántara-Bode, An integral equation formulation of the Riemann hypothesis, Integr. Equat. Oper. Th., 17 (1993), 151–168. https://doi.org/10.1007/bf01200216.
3. J. Alcántara-Bode, An algorithm for the evaluation of certain Fredholm determinants, Integr. Equat. Oper. Th., 39 (2001), 153–158. https://doi.org/10.1007/bf01195814
4. J. Alcántara-Bode, A completeness problem related to the Riemann hypotesis, Integr. Equat. Oper. Th., 53 (2005), 301–309. https://doi.org/10.1007/s00020-004-1315-7
5. J. Alcántara-Bode, An example of two non-unitarily equivalent compact operators with the same traces and kernel, Pro. Math., 23 (2009), 105–111.