Affiliation:
1. Department of Mathematics, Yildiz Technical University, Istanbul, 34220, Türkiye
2. Department of Business Administration, Yildiz Technical University, Istanbul, 34220, Türkiye
Abstract
<abstract><p>The primary goal of optimization theory is to formulate solutions for real-life challenges that play a fundamental role in our daily lives. One of the most significant issues within this framework is the Linear Fractional Programming Problem (LFrPP). In practical situations, such as production planning and financial decision-making, it is often feasible to express objectives as a ratio of two distinct objectives. To enhance the efficacy of these problems in representing real-world scenarios, it is reasonable to utilize fuzzy sets for expressing variables and parameters. In this research, we have worked on the Fully Fuzzy Linear Fractional Linear Programming Problem (FFLFrLPP). In our approach to problem-solving, we simplified the intricate structure of the FFLFrLPP into a crisp Linear Programming Problem (LPP) while accommodating the inherent fuzziness. Notably, unlike literature, our proposed technique avoided variable transformation, which is highly competitive in addressing fuzzy-based problems. Our methodology also distinguishes itself from the literature in preserving fuzziness throughout the process, from problem formulation to solution. In this study, we conducted a rigorous evaluation of our proposed methodology by applying it to a selection of numerical examples and production problems sourced from the existing literature. Our findings revealed significant improvements in performance when compared to established solution approaches. Additionally, we presented comprehensive statistical analyses showcasing the robustness and effectiveness of our algorithms when addressing large-scale problem instances. This research underscores the innovative contributions of our methods to the field, further advancing the state-of-the-art in problem-solving techniques.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference22 articles.
1. P. Anukokila, A. Anju, B. Radhakrishnan, Lexicographic approach for solving fully fuzzy fractional transportation problem, Int. J. Pure Appl. Math., 117 (2017).
2. C. R. Bector, S. Chandra, Fuzzy mathematical programming and fuzzy matrix games, Springer, 2005. https://doi.org/10.1007/3-540-32371-6
3. T. K. Bhatia, A. Kumar, M. K. Sharma, Mehar approach to solve fuzzy linear fractional transportation problems, Soft Comput., 26 (2022), 11525–11551. https://doi.org/10.1007/s00500-022-07408-x
4. A. Charnes, W. W. Cooper, An explicit general solution in linear fractional programming, Nav. Res. Log. Quart., 20 (1973), 449–467. https://doi.org/10.1002/nav.3800200308
5. V. Chinnadurai, S. Muthukumar, Solving the linear fractional programming problem in a fuzzy environment: Numerical approach, Appl. Math. Model., 40 (2016), 6148–6164. https://doi.org/10.1016/j.apm.2016.01.044