An iterative approach for the solution of fully fuzzy linear fractional programming problems via fuzzy multi-objective optimization

Author:

Bas Sema Akin1,Ozkok Beyza Ahlatcioglu2

Affiliation:

1. Department of Mathematics, Yildiz Technical University, Istanbul, 34220, Türkiye

2. Department of Business Administration, Yildiz Technical University, Istanbul, 34220, Türkiye

Abstract

<abstract><p>The primary goal of optimization theory is to formulate solutions for real-life challenges that play a fundamental role in our daily lives. One of the most significant issues within this framework is the Linear Fractional Programming Problem (LFrPP). In practical situations, such as production planning and financial decision-making, it is often feasible to express objectives as a ratio of two distinct objectives. To enhance the efficacy of these problems in representing real-world scenarios, it is reasonable to utilize fuzzy sets for expressing variables and parameters. In this research, we have worked on the Fully Fuzzy Linear Fractional Linear Programming Problem (FFLFrLPP). In our approach to problem-solving, we simplified the intricate structure of the FFLFrLPP into a crisp Linear Programming Problem (LPP) while accommodating the inherent fuzziness. Notably, unlike literature, our proposed technique avoided variable transformation, which is highly competitive in addressing fuzzy-based problems. Our methodology also distinguishes itself from the literature in preserving fuzziness throughout the process, from problem formulation to solution. In this study, we conducted a rigorous evaluation of our proposed methodology by applying it to a selection of numerical examples and production problems sourced from the existing literature. Our findings revealed significant improvements in performance when compared to established solution approaches. Additionally, we presented comprehensive statistical analyses showcasing the robustness and effectiveness of our algorithms when addressing large-scale problem instances. This research underscores the innovative contributions of our methods to the field, further advancing the state-of-the-art in problem-solving techniques.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3